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SUMMARY 
 

This research focuses on the evaluation of thermal energy efficiency in a building 
including thermal cascading systems such as cogeneration, solar-thermal, and PV systems, 
combined with final energy consumption for space heating and cooling, a dehumidifier, and a 
water heater. The thermal energy efficiency of the whole system varies depending on not only 
calorific balances but also on the temperature of heat conveying media and its flow-rate to 
each consumption unit. Based on the concept of the simulation tools, the major development 
work involves the modeling of cogeneration units. 

As the first development phase, a sample system consisting of one unit of each form of 
equipment has been completed adopting the “forward method.” This paper describes the 
overview of the development of the method by showing some results for a sample case study. 
 
 
1. INTRODUCTION 
 

Carbon emissions reduction in the commercial and residential sectors is an urgent 
requirement, and there is a particular need for action on the demand side to make more 
efficient use of energy in the building sector, where energy consumption is rising markedly. 
In order to exploit the potential of supplied energy to the full, multistage use through onsite 
conversion to heat and electric power ought to be pursued. As a concrete method to realize 
this goal, cogeneration systems are expected to promote and expand. 

Cogeneration systems are, along with solar power generation, designated “efficiency 
improving” technologies under the Japanese Energy Conservation Standards for Buildings.1 
They work by simultaneously generating electricity onsite to power machinery, lighting, and 
so on. They use the heat generated in the process for purposes such as air conditioning and 
water heating, thus raising the efficiency of primary energy use. Unlike most high-efficiency 
equipment, the performance of cogeneration systems is affected by the balance of electricity 
demand and heating/cooling demand, as well as by the timing of such demand. Assessing the 
effects quantitatively necessitates coupled calculation with all heat and electricity demand, 
including buildings, air conditioning, electrical equipment, and sanitation facilities. 

One simulation program that enables such calculations to be made is the “BEST” building 
energy simulation tool now under development in Japan, with the initiative of Ministry of 
Land, Infrastructure, Transport and Tourism, which handles housings and facilities in an 
integrated manner in order to assess the energy performance of buildings as a whole.2 



In view of the above background, the purpose of this study is to present a simulation logic 
for cogeneration systems that makes possible coupled calculation with each category of 
demand (building/air conditioning, electricity, and sanitation). 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
2. Existing simulation algorithms 

To serve as a point of reference before proceeding with this study, below we describe the 
algorithms used by existing simulation programs “CASCADE III”. 

This is a cogeneration system design and assessment program published by SHASE in 
1995. Equipment load is derived from the electricity and heat energy balance in order to 
calculate annual energy consumption. 

As the purpose of this study is to develop a simulation logic for incorporation into BEST, 
as described above, a departure must be made from the CASCADE III approach in that the 
heat balance must be expressed based on the flow rate and temperature difference of the heat 
medium (water), and calculations must be performable at rapid intervals of around five 
minutes. Table 1 shows a comparison of the principal specifications of each approach. 

The basic approach adopted for this study is, as Figure 2 shows, to perform calculations 
using the inlet temperature at the previous time for equipment with heat capacity (pipes and 
the preheating tank), and the outlet temperature of upstream equipment at the current time in 
the case of equipment for which heat capacity is disregarded (all equipment apart from pipes 
and the preheating tank). 
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Table 1  Comparison of the specifications 
between CASADEIII and BEST 

Figure 1  Example of cogeneration system configuration 



3. Modeling of cogeneration system 
The components of the model considered in this study are shown in Figure 1. As the BEST 

algorithm allows flexible connection of modules such as equipment, controllers, and 
boundary conditions, systems are basically freely configurable. The system considered in this 
study consisted of a generator, systems that utilize exhaust heat (space cooling, space heating, 
and water heating), a surplus exhaust heat radiator, auxiliary equipment, and a controller. 
 
(1) Generator 

A model was developed using a gas engine and a gas turbine for the generator. As one 
example, Figure 3 shows the input and output parameters for the gas engine. 

The equipment specifications consisted of those typically found in catalogs and engineering 
data. As partial load efficiency at two representative points is inputted along with rated 
efficiency, the partial load characteristic curve of these three points is interpolated by 
quadratic equation when a simulation is actually performed. For this study, the characteristic 
expression for partial loads was developed as a quadratic curve as shown in Figure 4 based on 
the numeric values for power generation efficiency at three points according to the literature 2 
(at 75% and 50% of rated load). Gas consumption and exhaust heat utilization were found 
according to power output. 

Almost the same model was used for the gas turbine, except that the increase in power 
generation output as outside air temperature rises was taken into account. With the exception 
of the modeling of dynamic characteristics, this model may also be applied to a phosphoric 
acid fuel cell following the same logic used for a gas engine. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(2) Controller 

In addition to the generator controller, a multi-unit controller capable of master control of 
multiple generators was developed. 

Figures 5 and 6 show in overview how control of the gas engine generator works. To 
control output level, a control signal is sent to the generator being controlled to indicate that 
target power output should equal the rated power output of the generator concerned. In the 
case of load following, on the other hand, target power output is obtained by the logic shown 
in Figure 4 and a control signal is sent to the controlled generator. 

An example of control by means of a multi-unit controller is shown in Figure 7, which is 
for a multi-unit system consisting of four 1,000 kW generators. This shows the output of each 
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generator to meet power demand where the first unit is operated at fixed output and 
subsequent units are operated on a load-following basis with a minimum output of 600 kW. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(3) Absorption chiller-heater with auxiliary exhaust heat recovery 

The input and output parameters of the absorption chiller-heater with auxiliary exhaust heat 
recovery are as shown in Figure 8. In this study, only those types that use exhaust heat from 
heated water were considered. 

The steps in the calculations are shown in Figure 9. Chilled water demand is given by the 
controller, and exhaust heat recovery is calculated according to this demand and exhaust heat 
potential (exhaust heat inlet temperature and exhaust heat flow rate). Given exhaust heat 
recovery, it is possible to calculate the gas consumption and outlet temperature of each system. 

Exhaust heat recovery is calculated by first calculating recoverable exhaust heat from the 
inlet temperature and flow rate of each system, based on which the exhaust heat outlet 
temperatures are checked and ultimate exhaust heat recovery is calculated. Gas consumption 
is obtained by deducting exhaust heat utilization from gas consumed during operation as a 
direct-fired absorption chiller-heater without utilizing exhaust heat. 
The exhaust heat recovery of absorption chiller-heaters varies according to load factor, 
exhaust heat temperature, and exhaust heat flow rate. As Figure 10 shows, the equipment 
characteristics are replicated so that chilled water is generated using exhaust heat alone when 
operating at a load below a certain level. However, when the load factor rises and demand for 
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chilled water can no longer be met by inputting exhaust heat alone, exhaust heat input is 
lowered and supplementation by gas is gradually increased. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Coupled calculation 

In this section, we describe a simulation performed for the sample system.  
In this case, the simulation was performed under the following conditions and for the case 

shown in Table 2. Heat and power demands (space cooling, space heating, and electricity) 
were modeled using CASCADE III and load data created at five-minute intervals. 

The secondary air-conditioning system was excluded from calculations. 
The heat exchanger was modeled by varying heat transfer availability according to flow 

rate. Calculations were made for typical days (weekdays and holidays) each month. 
 
(1) Simulation settings 

The simulation was performed using the settings shown in Table 2. A cogeneration system 
was adopted. A gas engine was employed for the generator and the exhaust heat of heated 
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Table 2  Simulation settings 
Item Setting 

Overall Gas type: City gas 13 A 
 Heating value: 45 MJ/m3 (HHV) 

Total floor area: 9,919 m2 (12 floors) 
Ceiling height: 2.6 m 

Building 

Zoning: 8 zones with air conditioner in each 
Operating hours: 08:00-22:00 (Monday-
Friday) 

Operating 
schedule 

Heating/cooling periods: cooling (May-
November), heating (December-April) 
Rated power output: 350 kW 
Rated power generation efficiency/rated 
exhaust heat recovery efficiency (LHV basis): 
40.5%/34.5% 
Auxiliary equipment motive power: 17.5 kW

Gas engine 

Control method: load following 
When cooling (rated capacity/gas 
consumption (no exhaust heat)/power 
consumption/rated exhaust heat recovery): 
1,055/822/5.1/326 kW 

Absorption 
chiller-heater 
with auxiliary 
exhaust heat 
recovery When heating (rated capacity/gas 

consumption/power consumption): 
692/822/4.8 kW 

Heat exchanger 
for space heating

Capacity 298 kW 

Chilled/heated water pump Flow rate: 3,024 
l/min; power consumption: 30 kW 
Cooling water pump Flow rate: 5,000 l/min; 
power consumption: 22 kW 
Heated water pump Flow rate: 855 l/min; 
power consumption: 11 kW 
Exhaust heat circulating pump Flow rate: 
481.8 l/min; power consumption: 3.7kW 

Pump 

Cooling water pump for exhaust heat cooling 
Flow rate: 963.6 l/min; power consumption: 
7.5 kW 
Cooling water flow rate: 5,000 l/min Cooling tower 
Fan: 16.5 kW 

water having a temperature of 
approximately 90degC was used by an 
absorption chiller-heater with auxiliary 
exhaust heat recovery. Any surplus exhaust 
heat at this time is released into the 
atmosphere by a cooling tower. 
 
(2) Simulation results 

Figure 11 shows the results of the 
simulation for a typical summer’s day in 
Japan. It can be seen that, as the gas engine 
was configured to operate on a load-
following basis, output varies according to 
the time of day. As can be seen from the 
exhaust heat outlet/inlet temperatures of the 
gas engine, the simulation replicates the fall 
in the temperature of the pipes (which 
function as the system’s heat carrier when 
shut down at night) to around outside air 
temperature and inflow of cooled exhaust-
heated water to the gas engine. The 
absorption chiller-heater is entirely direct 
gas-fired and makes no use of exhaust heat 
immediately after the gas engine starts up, 
as the temperature of the exhaust heat 
system is low. It can also be seen that the 
equipment characteristics are replicated so 
that exhaust heat utilization increases 
slightly and gas consumption falls when the 
amount of heat of chilled/heated water 
gradually declines from around 18:00. 
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Figure 11  Example of cogeneration system simulation results for typical summer days in Japan 



Figure 12 shows the relationship between load factor and the efficiency of power 
generation capacity and exhaust heat recovery when the gas engine is in operation during two 
months (July and August) of the one-year simulation. The figure includes power generation 
efficiency and exhaust heat recovery efficiency at the inputted rated load, 75% load, and 50% 
load, and it could be confirmed that the expected results were obtained by quadratic 
interpolation of efficiency at partial load for all power generation and exhaust heat recovery 
efficiency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Confirmation of the heat balance of the exhaust heat system was conducted over a two-

month summer period in order to verify the validity of the forward method used for the 
system simulation. Results showed the difference between the exhaust heat recovery of the 
gas engine and demand (equal to the sum of the exhaust heat recovery of the absorption 
chiller-heater with auxiliary exhaust heat recovery and the amount remaining unused) to be 
around 3%, which is within the practically acceptable range. Examined more closely, an 
imbalance was found to occur when the system commences operation. 

This is due to the use of the forward method; for although the circulation of exhaust heat 
should cause the system temperature to gradually rise after the five-minute time interval used 
for calculations, the forward method allows exhaust heat to circulate only once during the 
simulation at the time concerned. It also treats the exhaust heat of the gas engine as 
theoretically being entirely stored in the pipes that are the system’s heat carrier. Another 
reason for this is that the stability conditions between exhaust heat recovery and pipe heat 
capacity are disregarded. Although the integrated error for the period is around 3% as noted 
above, the above factors may give rise to errors that can no longer be ignored when frequency 
of operation increases, and this will need to continue to be verified in the future. 

 
7. Conclusions and future research 

The computational model for facilities and equipment was determined on the basis of 
existing models and interviews with manufacturers. When calculations were performed with 
these connected, a problem was found to occur in the form of a heat imbalance due to the size 
of the circulation flow rate and the heat capacity to be absorbed. This will have to be dealt 
with by such means as modifying the order of calculations and adopting realistic flow rates. 
The system heat balance is generally good, and the indications are that a method of system 
simulation by means of a simple method of calculation has been successfully developed. 

Attention now needs to turn to the following points to enable simulations to be performed 
in a more versatile manner. 
 

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.5 0.6 0.7 0.8 0.9 1.0

E
ff

ic
ie

nc
y

Load factor

Power generation 
efficiency Exhaust heat recovery efficiency

Inputted power generation 
efficiency

Inputted exhaust heat recovery efficiency

Figure 12  Relationship between gas engine load factor and efficiency of 
power generation, and exhaust heat recovery  



(1) Expansion of components 
Actual buildings often employ a greater range of heat source devices that operate under 

multi-unit control. It is therefore necessary to create an environment in which system 
simulations for entire buildings can be performed by expanding the range of heat source 
devices and components of air systems. 
(2) Improvement of versatility 

The algorithm employed in this study was a simple forward method. As the results of 
calculations using this method can differ considerably depending on the order of calculations 
for facilities and equipment, a method of sequencing calculations more robustly or a switch to 
an algorithm for performing simple convergences (if versatility is to be raised) will be 
required. 
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